上海高端有源医疗装备技术展

ADTE 高端有源医疗装备技术展

2024年9月25-27日 | 上海世博展览馆2号馆

 EN|CN

   

影像设备

根据相关信息显示,全球医疗影像市场在2023年的规模为403.3亿美元,预计从2024年的426.7亿美元增长至2032年的701.9亿美元,预测期间(2024年至2032年)的复合年增长率(CAGR)为6.4%。慢性疾病的增多,如心血管疾病、神经学障碍和其他疾病,加上不断调整的医疗保健体系,导致了对早期诊断的重视增加。
市场情报
根据相关信息显示,全球医疗影像市场在2023年的规模为403.3亿美元,预计从2024年的426.7亿美元增长至2032年的701.9亿美元,预测期间(2024年至2032年)的复合年增长率(CAGR)为6.4%。慢性疾病的增多,如心血管疾病、神经学障碍和其他疾病,加上不断调整的医疗保健体系,导致了对早期诊断的重视增加。
市场情报
根据相关信息显示,全球医疗影像市场在2023年的规模为403.3亿美元,预计从2024年的426.7亿美元增长至2032年的701.9亿美元,预测期间(2024年至2032年)的复合年增长率(CAGR)为6.4%。慢性疾病的增多,如心血管疾病、神经学障碍和其他疾病,加上不断调整的医疗保健体系,导致了对早期诊断的重视增加。根据美国疾病控制与预防中心(CDC)的数据,仅在美国,2021年就有约1820万成年人每年受到冠状动脉疾病(CAD)的影响。
市场情报
根据相关信息显示,全球医疗影像市场在2023年的规模为403.3亿美元,预计从2024年的426.7亿美元增长至2032年的701.9亿美元,预测期间(2024年至2032年)的复合年增长率(CAGR)为6.4%。慢性疾病的增多,如心血管疾病、神经学障碍和其他疾病,加上不断调整的医疗保健体系,导致了对早期诊断的重视增加。根据美国疾病控制与预防中心(CDC)的数据,仅在美国,2021年就有约1820万成年人每年受到冠状动脉疾病(CAD)的影响。
市场情报
光声(PA)成像是一种非侵入性生物医学成像技术,它结合了光学和声学的优点,可提供高分辨率的结构和功能信息。本综述重点介绍了三维手持式 PA 成像系统的出现,它是一种应用于各种生物医学领域的前景广阔的方法。这些系统分为四种技术:使用二维超声阵列的直接成像、使用一维超声阵列的基于机械扫描的成像、基于镜像扫描的成像和基于自由手持扫描的成像。本综述全面概述了每种成像技术的最新研究成果,并讨论了解决系统局限性的潜在方案。
研发设计
光声(PA)成像是一种非侵入性生物医学成像技术,它结合了光学和声学的优点,可提供高分辨率的结构和功能信息。本综述重点介绍了三维手持式 PA 成像系统的出现,它是一种应用于各种生物医学领域的前景广阔的方法。这些系统分为四种技术:使用二维超声阵列的直接成像、使用一维超声阵列的基于机械扫描的成像、基于镜像扫描的成像和基于自由手持扫描的成像。本综述全面概述了每种成像技术的最新研究成果,并讨论了解决系统局限性的潜在方案。
研发设计
随着类器官的培养及应用日趋火热,对其进行观测、分析与评估的兴趣也日益浓厚。一方面是研究的需要,另一方面也是期待将类器官的制备过程逐步标准化。众多光学显微系统自然在类器官的观测中发挥了重要的作用。类器官的光学观测主要是通过对活体或固定的类器官进行成像,可能会涉及到荧光、免疫等标记、透明化处理等步骤。成像后进行二维或三维重构,主要进行两类分析:一类是量化分析。类器官中的细胞种类及其数量,测量特定标记的信号强度等。另一类是进行形态学的观测与分析如类器官的尺寸,如体积、横截面积等。
显微镜
随着类器官的培养及应用日趋火热,对其进行观测、分析与评估的兴趣也日益浓厚。一方面是研究的需要,另一方面也是期待将类器官的制备过程逐步标准化。众多光学显微系统自然在类器官的观测中发挥了重要的作用。类器官的光学观测主要是通过对活体或固定的类器官进行成像,可能会涉及到荧光、免疫等标记、透明化处理等步骤。成像后进行二维或三维重构,主要进行两类分析:一类是量化分析。类器官中的细胞种类及其数量,测量特定标记的信号强度等。另一类是进行形态学的观测与分析如类器官的尺寸,如体积、横截面积等。
显微镜
在第一篇文章中重点研究可穿戴超声的临床需求和探索,讲到实现可穿戴超声的技术瓶颈是柔性的、微型化的、与人体长时间贴附性好、可高分辨率成像的超声传感器的设计,可喜的是加州大学圣地亚哥分校徐升教授团队,以及麻省理工赵选贺教授团队和Canan Dagdeviren 团队等都在贴片式超声领域做了深入的研究,在Nature和Science上发表高水平的文章,接下来我们一起研究他们的研究成果,一览贴片式超声的发展。
贴片式超声
在第一篇文章中重点研究可穿戴超声的临床需求和探索,讲到实现可穿戴超声的技术瓶颈是柔性的、微型化的、与人体长时间贴附性好、可高分辨率成像的超声传感器的设计,可喜的是加州大学圣地亚哥分校徐升教授团队,以及麻省理工赵选贺教授团队和Canan Dagdeviren 团队等都在贴片式超声领域做了深入的研究,在Nature和Science上发表高水平的文章,接下来我们一起研究他们的研究成果,一览贴片式超声的发展。
贴片式超声

影响设备

在医疗领域内窥镜中,景深这个参数尤为重要。例如,在腹腔镜呈现的图像上通过适配器光圈焦距的调节,能给主任医师显示出更加完美了解手术中病患位置的情况。
内窥镜, 设计
在医疗领域内窥镜中,景深这个参数尤为重要。例如,在腹腔镜呈现的图像上通过适配器光圈焦距的调节,能给主任医师显示出更加完美了解手术中病患位置的情况。
内窥镜, 设计
根据高斯光学原理,以液体透镜为核心元件,研究了无移动镜组变焦系统的设计方法。从医用内窥镜的使用要求出发,设计了一种二元变焦内窥镜系统。该系统可通过气压或液压控制液体透镜表面曲率变化,实现1.5倍变倍比,在1.8mm和2.7mm焦距下都获得了良好的成像质量。
光学系统
根据高斯光学原理,以液体透镜为核心元件,研究了无移动镜组变焦系统的设计方法。从医用内窥镜的使用要求出发,设计了一种二元变焦内窥镜系统。该系统可通过气压或液压控制液体透镜表面曲率变化,实现1.5倍变倍比,在1.8mm和2.7mm焦距下都获得了良好的成像质量。
光学系统
自从人工智能(AI)首次出现在放射学领域以来,已经接近十年了。在这期间,超过700种医疗影像相关的算法获得了美国食品药品监督管理局(FDA)的510(k)市场准入许可,允许它们销售产品。中国食药监局也已批准了超过45个医疗影像相关的AI产品。大多数医疗影像AI公司都在焦急地等待着AI产品销售热潮的到来,但至今尚未发生。医学影像AI产品销售热潮会出现吗?对于一些医学影像AI公司来说,答案是肯定的,但对于绝大多数医学影像AI公司而言,则不然。从放射科医生、医院以及患者的角度来看,还有几个障碍需要解决。
人工智能
自从人工智能(AI)首次出现在放射学领域以来,已经接近十年了。在这期间,超过700种医疗影像相关的算法获得了美国食品药品监督管理局(FDA)的510(k)市场准入许可,允许它们销售产品。中国食药监局也已批准了超过45个医疗影像相关的AI产品。大多数医疗影像AI公司都在焦急地等待着AI产品销售热潮的到来,但至今尚未发生。医学影像AI产品销售热潮会出现吗?对于一些医学影像AI公司来说,答案是肯定的,但对于绝大多数医学影像AI公司而言,则不然。从放射科医生、医院以及患者的角度来看,还有几个障碍需要解决。
人工智能
内窥镜至今已有200多年历史,其发展经历了四个阶段:硬式内窥镜、半可曲式内窥镜、纤维内窥镜和电子内窥镜。电子内镜的发展给行业带来突破性变革。电子内镜用显示器替代目镜,让术者拥有更全面的手术视野,能够实现多人诊断和远程会诊。内镜的发展使得微创手术成为可能,而微创手术的繁荣也丰富了内镜的种类。外科手术设备和耗材的创新依赖医工转换,企业研发人员与医生相互配合,能够更有效的促进外科手术设备和耗材的发展。随着微创手术的繁荣发展,新型的内镜产品推陈出新。内窥镜可划分为硬镜和软镜,一般而言,腔体更适合硬镜,管道更适合软镜,但硬镜和软镜在应用领域上没有绝对的划分。就竞争壁垒而言,硬镜的竞争壁垒没有软镜高。硬镜可分为腹腔镜、宫腔镜、膀胱镜、关节镜等,种类繁多,应用场景多元化。
内窥镜, 行业
内窥镜至今已有200多年历史,其发展经历了四个阶段:硬式内窥镜、半可曲式内窥镜、纤维内窥镜和电子内窥镜。电子内镜的发展给行业带来突破性变革。电子内镜用显示器替代目镜,让术者拥有更全面的手术视野,能够实现多人诊断和远程会诊。内镜的发展使得微创手术成为可能,而微创手术的繁荣也丰富了内镜的种类。外科手术设备和耗材的创新依赖医工转换,企业研发人员与医生相互配合,能够更有效的促进外科手术设备和耗材的发展。随着微创手术的繁荣发展,新型的内镜产品推陈出新。内窥镜可划分为硬镜和软镜,一般而言,腔体更适合硬镜,管道更适合软镜,但硬镜和软镜在应用领域上没有绝对的划分。就竞争壁垒而言,硬镜的竞争壁垒没有软镜高。硬镜可分为腹腔镜、宫腔镜、膀胱镜、关节镜等,种类繁多,应用场景多元化。
内窥镜, 行业
在现代医学中,医学影像学的重要性不言而喻。从CT、MRI到超声,这些技术使得医生能够窥探到人体内部的细节,精准诊断和治疗疾病。然而,随着科技的不断进步,我们迎来了一个新的时代——人工智能(AI)与风险预测模型的应用,这就如同借你一双“慧眼”,让我们更清晰地看到疾病的全貌,并预见未来的风险。
人工智能, 影像
在现代医学中,医学影像学的重要性不言而喻。从CT、MRI到超声,这些技术使得医生能够窥探到人体内部的细节,精准诊断和治疗疾病。然而,随着科技的不断进步,我们迎来了一个新的时代——人工智能(AI)与风险预测模型的应用,这就如同借你一双“慧眼”,让我们更清晰地看到疾病的全貌,并预见未来的风险。
人工智能, 影像