影像设备

光电成像的本质是光场信息的获取与解译。所谓的光场解译是指对传统光电成像系统中所捕捉到的图像信息进行更深入的分析和解读。传统光电成像系统只能记录二维空间上的光强度分布,类似于人眼视觉。然而,实际上,成像系统中所包含的信息要比我们所看到的图像更多。光场解译则是通过对这些信息的分析和解读,来获取更多有用的信息。通过光场解译,我们可以对一些隐含在图像中的信息进行提取和解读,因而引出了计算光学成像。
光电, 技术新知
光电成像的本质是光场信息的获取与解译。所谓的光场解译是指对传统光电成像系统中所捕捉到的图像信息进行更深入的分析和解读。传统光电成像系统只能记录二维空间上的光强度分布,类似于人眼视觉。然而,实际上,成像系统中所包含的信息要比我们所看到的图像更多。光场解译则是通过对这些信息的分析和解读,来获取更多有用的信息。通过光场解译,我们可以对一些隐含在图像中的信息进行提取和解读,因而引出了计算光学成像。
光电, 技术新知

这篇综述关注了基于三种类型的光学微腔(法布里-珀罗腔、π相移布拉格光栅和回音壁模式微腔)实现超声波传感应用的最新进展,概述了这些微腔的超声波传感机制,并讨论了如何优化超声波传感器的关键参数。此外,本文还介绍了光学微腔超声波传感器在不同探测场景中的应用,例如光声成像、测距和粒子检测等方面。本文可以帮助读者全面了解光学微腔超声波传感的最新进展,及其未来在高性能超声波成像和传感技术中的发展潜力。
技术新知, 部件
这篇综述关注了基于三种类型的光学微腔(法布里-珀罗腔、π相移布拉格光栅和回音壁模式微腔)实现超声波传感应用的最新进展,概述了这些微腔的超声波传感机制,并讨论了如何优化超声波传感器的关键参数。此外,本文还介绍了光学微腔超声波传感器在不同探测场景中的应用,例如光声成像、测距和粒子检测等方面。本文可以帮助读者全面了解光学微腔超声波传感的最新进展,及其未来在高性能超声波成像和传感技术中的发展潜力。
技术新知, 部件

光学显微技术虽广泛应用于多学科领域,但其横向分辨率受光衍射限制。介电微球通过光子纳米喷射等现象提供了突破这一限制的希望,已在多种显微技术中展现出二维和三维分辨率增强的潜力。然而,微球辅助显微镜面临视场小和集成难等挑战,限制了其广泛应用。
技术新知, 部件
光学显微技术虽广泛应用于多学科领域,但其横向分辨率受光衍射限制。介电微球通过光子纳米喷射等现象提供了突破这一限制的希望,已在多种显微技术中展现出二维和三维分辨率增强的潜力。然而,微球辅助显微镜面临视场小和集成难等挑战,限制了其广泛应用。
技术新知, 部件
影响设备

医用内窥镜是一种有着大约200年历史的医疗器械,它是普外科、泌尿外科、耳鼻喉科、骨科、妇科等科室不可或缺的诊断和手术设备,也是全球医疗器械产业中增长最快的产品类型之一;按应用场景可分为硬镜和软镜。
内窥镜, 市场
医用内窥镜是一种有着大约200年历史的医疗器械,它是普外科、泌尿外科、耳鼻喉科、骨科、妇科等科室不可或缺的诊断和手术设备,也是全球医疗器械产业中增长最快的产品类型之一;按应用场景可分为硬镜和软镜。
内窥镜, 市场

内窥镜抓钳是一种常见的内窥镜介入耗材,用于在内窥镜检查或治疗过程中进行组织采样、病变切除或异物取出等操作。它通常由金属材料制成,具有一对可移动的抓取爪或夹子,用于夹持和固定目标组织或物体。
内窥镜, 部件
内窥镜抓钳是一种常见的内窥镜介入耗材,用于在内窥镜检查或治疗过程中进行组织采样、病变切除或异物取出等操作。它通常由金属材料制成,具有一对可移动的抓取爪或夹子,用于夹持和固定目标组织或物体。
内窥镜, 部件

内窥镜检查:内窥镜机器人可以进行各种内窥镜检查,如胃镜、肠镜、膀胱镜等。它们能够操纵内窥镜的运动和角度,使医生能够观察和检查患者体内的器官和组织,以便进行诊断。
内窥镜, 机器人
内窥镜检查:内窥镜机器人可以进行各种内窥镜检查,如胃镜、肠镜、膀胱镜等。它们能够操纵内窥镜的运动和角度,使医生能够观察和检查患者体内的器官和组织,以便进行诊断。
内窥镜, 机器人

传统的临床超声波成像设备需要经过专业培训的医师操作,且通常限于医院和诊所使用。这些设备不便于移动,且无法实现连续监测。为了解决这些问题,研究者们开始探索将超声波成像技术与可穿戴设备结合的可能性,以实现全身体、连续的可穿戴超声波监测。
现代可穿戴设备,如Fitbit和Apple Watch,不仅能够追踪日常活动量、监测心率,甚至能够执行曾经需要专业医疗环境支持的心电图检查。这些设备通过提供易于理解的生物指标数据,鼓励人们采取更健康的生活方式。此外,可穿戴式血糖监测器已经为糖尿病患者提供了持续的血糖读数,减少了频繁的针刺需求。
特别是超声波成像,它基于声纳的原理,通过发送高频声波进入身体并从内部结构反射回来,产生实时的动态过程图像,如心脏跳动或血液流动。
可穿戴, 成像
传统的临床超声波成像设备需要经过专业培训的医师操作,且通常限于医院和诊所使用。这些设备不便于移动,且无法实现连续监测。为了解决这些问题,研究者们开始探索将超声波成像技术与可穿戴设备结合的可能性,以实现全身体、连续的可穿戴超声波监测。
现代可穿戴设备,如Fitbit和Apple Watch,不仅能够追踪日常活动量、监测心率,甚至能够执行曾经需要专业医疗环境支持的心电图检查。这些设备通过提供易于理解的生物指标数据,鼓励人们采取更健康的生活方式。此外,可穿戴式血糖监测器已经为糖尿病患者提供了持续的血糖读数,减少了频繁的针刺需求。
特别是超声波成像,它基于声纳的原理,通过发送高频声波进入身体并从内部结构反射回来,产生实时的动态过程图像,如心脏跳动或血液流动。
可穿戴, 成像

DD insight: 能够在床旁就进行快速脑灌注评估以诊断/监测脑血管疾病(首先是中风),理想情况是增加了血管介入手术的渗透率,降低了CT/MRI的检测费用。
超声
DD insight: 能够在床旁就进行快速脑灌注评估以诊断/监测脑血管疾病(首先是中风),理想情况是增加了血管介入手术的渗透率,降低了CT/MRI的检测费用。
超声