高端医疗器械展|二元变焦内窥镜光学系统设计
根据高斯光学原理,以液体透镜为核心元件,研究了无移动镜组变焦系统的设计方法。从医用内窥镜的使用要求出发,设计了一种二元变焦内窥镜系统。该系统可通过气压或液压控制液体透镜表面曲率变化,实现1.5倍变倍比,在1.8mm和2.7mm焦距下都获得了良好的成像质量。
高端有源医疗装备技术展|医院放射科准备好迎接人工智能了吗?
自从人工智能(AI)首次出现在放射学领域以来,已经接近十年了。在这期间,超过700种医疗影像相关的算法获得了美国食品药品监督管理局(FDA)的510(k)市场准入许可,允许它们销售产品。中国食药监局也已批准了超过45个医疗影像相关的AI产品。大多数医疗影像AI公司都在焦急地等待着AI产品销售热潮的到来,但至今尚未发生。医学影像AI产品销售热潮会出现吗?对于一些医学影像AI公司来说,答案是肯定的,但对于绝大多数医学影像AI公司而言,则不然。从放射科医生、医院以及患者的角度来看,还有几个障碍需要解决。
高端医疗器械展|内窥镜硬镜系列深度分析:蓄势待发
内窥镜至今已有200多年历史,其发展经历了四个阶段:硬式内窥镜、半可曲式内窥镜、纤维内窥镜和电子内窥镜。电子内镜的发展给行业带来突破性变革。电子内镜用显示器替代目镜,让术者拥有更全面的手术视野,能够实现多人诊断和远程会诊。内镜的发展使得微创手术成为可能,而微创手术的繁荣也丰富了内镜的种类。外科手术设备和耗材的创新依赖医工转换,企业研发人员与医生相互配合,能够更有效的促进外科手术设备和耗材的发展。随着微创手术的繁荣发展,新型的内镜产品推陈出新。内窥镜可划分为硬镜和软镜,一般而言,腔体更适合硬镜,管道更适合软镜,但硬镜和软镜在应用领域上没有绝对的划分。就竞争壁垒而言,硬镜的竞争壁垒没有软镜高。硬镜可分为腹腔镜、宫腔镜、膀胱镜、关节镜等,种类繁多,应用场景多元化。
高端有源医疗装备技术展|医学影像学研究领域中人工智能与风险预测模型
在现代医学中,医学影像学的重要性不言而喻。从CT、MRI到超声,这些技术使得医生能够窥探到人体内部的细节,精准诊断和治疗疾病。然而,随着科技的不断进步,我们迎来了一个新的时代——人工智能(AI)与风险预测模型的应用,这就如同借你一双“慧眼”,让我们更清晰地看到疾病的全貌,并预见未来的风险。
高端医疗器械展|超声超构换能器的蓬勃发展
提高超声系统在原位、实时工作中的适用性的关键要求是低硬件复杂性和低功耗。这些特性在现有超声系统中尚未实现,因为超声检测通常是通过相控阵列来完成的,该阵列包含大量单独控制的压电换能器,并生成大量数据。为了最大限度地降低能耗和计算需求,可以构思出具有超越单纯转换功能的新型器件,即超构换能器(meta-transducers)。
高端医疗器械展|一次性内窥镜面临的是机遇!也是挑战!
2017年美国波士顿科学的一次性使用胆胰管成像导管也获批上市。随后的两年时间,一次性内窥镜市场处于被海外厂商垄断的状态,且仅有2款产品问世。随着更多国产一次性内窥镜产品进入临床,2020年起我国一次性产品加速上市速度,并于2022年开启井喷状态,全年共有42款产品获批上市。泌尿科为最广泛布局的科室,已有27家企业布局一次性膀胱镜以及输尿管镜,并47款产品获批上市,约占总数的63.5%。此外,16.2%的产品应用于呼吸科,12.2%的产品应用于妇科,6.8%的产品应用于消化科,以及1.4%的产品应用于微创外科。
电子医疗器械展|磁共振磁体的性能指标有哪些?
磁体系统对于MRI设备具有重要作用,MRI图像质量与磁场强度、磁场均匀性、梯度线圈、射频线圈等因素相关。
其性能指标主要包括磁场强度、磁场均匀性、磁场稳定性、磁体有效孔径、边缘空间范围等。
高端有源医疗装备技术展|血脑屏障成像MRI技术有哪些?
测量血脑屏障损伤最常用的技术是 DCE-MRI。该技术使用钆对比剂团注,然后随着时间的推移采集一系列动态的 T1 加权扫描。由于钆具有 T1 缩短效应(T1 Shortening Effect),因此可以通过评估信号强度随时间的增加来获得对比剂的浓度。
有源医疗设备展|下一代光电成像技术:计算光学成像
光电成像的本质是光场信息的获取与解译。所谓的光场解译是指对传统光电成像系统中所捕捉到的图像信息进行更深入的分析和解读。传统光电成像系统只能记录二维空间上的光强度分布,类似于人眼视觉。然而,实际上,成像系统中所包含的信息要比我们所看到的图像更多。光场解译则是通过对这些信息的分析和解读,来获取更多有用的信息。通过光场解译,我们可以对一些隐含在图像中的信息进行提取和解读,因而引出了计算光学成像。
电子医疗器械展| 光学微腔超声波传感
这篇综述关注了基于三种类型的光学微腔(法布里-珀罗腔、π相移布拉格光栅和回音壁模式微腔)实现超声波传感应用的最新进展,概述了这些微腔的超声波传感机制,并讨论了如何优化超声波传感器的关键参数。此外,本文还介绍了光学微腔超声波传感器在不同探测场景中的应用,例如光声成像、测距和粒子检测等方面。本文可以帮助读者全面了解光学微腔超声波传感的最新进展,及其未来在高性能超声波成像和传感技术中的发展潜力。