前言:
由电子医疗器械展知悉,PFA导管形态设计五花八门,以肺静脉隔离为例,主流的设计包括花瓣状、球囊状、环状等,不同的导管设计安全有效性表现如何?Andres Belalcazar等在Heart Rhythm上发表的文章通过实验模型对比了不同形态导管的安全有效性,结果值得学习。
图片来源:心电生理小美讲堂
研究背景:
研究目的:
研究方法:
图片来源:心电生理小美讲堂
如图1所示。所有系统的直径都是22毫米,与已上市的射频或PFA导管规格类似。球囊有3.6*3.6毫米电极(面积13平方毫米)与组织贴壁,但不接近血液。电极间的间距为2.4毫米。
第一类球囊导管是用一种不导电的填充液(如5%的葡萄糖)模拟的,这种填充液经过初步测试,可以减少可能使薄膜破裂的高电场。
第二类设计为花瓣/网篮状导管,有柔性电路样条,每个4毫米宽,0.5毫米厚,与心房血液绝缘,因为电极安装在聚合物上。电极的尺寸和间距与上面的球囊导管相同。绝缘不如球囊导管,因为电流有可能流过样条之间的空间。
第三种设计是使用环形导管,每个电极长3mm,直径1.6mm;电极间距为3.7mm。
所有导管的电极均放置在相同的精确位置,仅切向接触壁组织,以控制位置,方便作变量分析。为了减少不均匀接触组织的混杂效应,采用了电流控制方案,因此不管电极-组织阻抗如何,都输送相同的电流。
研究的第二个变量是能量给予的模拟方式,即给电极通电的方式。下图显示了4种放电的模式。这些模式是基于一些厂商对PFA装置的报道。通过双相脉冲能量传输,分离相邻的相反极性电极,可避免短路,从而减少电弧。
图片来源:心电生理小美讲堂
如上图示四种给电极供电的方法。前两种是单极方法,正极为导管电极,负极为患者背部的负极板(类似射频消融)。在多单极输送方法中(第一种),所有电极都被正向通电,同时电流从所有电极流向背面电极。在顺序单极方法中(第二种),每个电极依次通电,其他电极则浮动。对于交错双极方法(后三种),患者背部没有电极,电流产生在电极的正负极之间。标准交错方法具有交替极性的电极,即相邻单极一正一负(第三种)。宽交错法在交替极性的电极之间具有不通电的浮动电极,即正负极之间有多余不通电的电极(第四第五种);
心脏三维及毗邻解剖通过计算机模型建立,以评估消融安全性,下图所示为计算机断层扫描衍生的建模解剖结构的部分视图。左图:后视图,包括降主动脉段(红色)、部分食道(黄色)、气道和左肺(蓝色)、左心房(棕色)和肺干(洋红色)。腔静脉、右心房和冠状窦显示为紫色。右图:相同的俯视图,但切除了更多器官。左心房壁(灰色)厚 2.5 毫米。左肺静脉窦处的 6 毫米宽目标在主动脉和食管前方可见(参见文字和图 4)。
图片来源:心电生理小美讲堂
研究结果;
对于多电极输送方法,靠近主动脉的后壁电极在6A的电流下,球囊导管、花瓣导管和环形导管的阻抗分别为856、821和630欧姆。电压分别为5135、4929和3777伏。阻抗值是每个电极的,而不是系统的,当考虑所有电极时,系统的阻抗值会更低。例如,对于环形导管,多极法的系统阻抗约为63 欧姆,平均电压3803V / (10个电极*6A)。具有更多电极但被球囊更好绝缘的球囊导管产生了略高的系统阻抗,约为68 欧姆 ,平均电压为5299 V / (13个电极*6A)。
当单独通电(顺序单极输送法)为6A时,球囊导管、花瓣导管和环形导管的阻抗分别为184、153和120欧姆。电压分别为1103、919和718伏。脂肪区域附近的阻抗稍高,例如,球囊系统中的房顶电极的阻抗为199欧姆。对于交错输送方法,后部电极在6A时的阻抗分别为257、214和105欧姆,分别为球囊导管、花瓣导管和环形导管。电压分别为1539、1284和631伏。需要注意的是,圆形导管有一个标准的交错输送方法,而球囊和花瓣系统有一个顺序-宽度-交错输送方法,所以它们的阻抗不能严格比较。
有效性:
图片来源:心电生理小美讲堂
安全性——临近组织:
安全性——气泡相关栓塞安全性
在实现了90%的透壁损伤的前提下。更小的电流密度意味着更低的气泡产生率和更高的安全性。与球囊型或花瓣型导管相比,环形导管具有约4-5倍的气泡生成,正如预期的那样,主要是因为环形电极更多的暴露在血液中。
图片来源:心电生理小美讲堂
研究结论:
想了解更多请前往电子医疗器械展
文章来源:心电生理小美讲堂
若涉及侵权,请立刻联系删除
关键字: